
thread of (1) using an encoder with fully-connected mask to encode the source x first and then (2) decode the target
y auto-regressively (from the left to right).

Prefix Language Model The prefix LM is a left-to-right LM that decodes y conditioned on a prefixed sequence
x, which is encoded by the same model parameters but with a fully-connected mask. Notably, to encourage the
prefix LM to learn better representations of the input, a corrupted text reconstruction objective is usually applied
over x, in addition to a standard conditional language modeling objective over y.

Encoder-decoder The encoder-decoder model is a model that uses a left-to-right LM to decode y conditioned
on a separate encoder for text x with a fully-connected mask; the parameters of the encoder and decoder are not
shared. Similarly to the prefix LM, diverse types of noising can be applied to the input x.

Example & Applicable Scenario

Prefix LMs have been explored in UniLM 1-2 (Dong et al., 2019; Bao et al., 2020) and ERNIE-M (Ouyang
et al., 2020) while encoder-decoder models are widely used in pre-trained models such as T5 (Raffel et al.,
2020), BART (Lewis et al., 2020a), MASS (Song et al., 2019) and their variants.
Pre-trained models with prefix LMs and encoder-decoder paradigms can be naturally used to text generation
tasks with (Dou et al., 2021) or without (Yuan et al., 2021a; Liu and Liu, 2021) prompting using input texts.
However, recent studies reveal that other non-generation tasks, such as information extraction (Cui et al.,
2021), question answering (Khashabi et al., 2020) , and text generation evaluation (Yuan et al., 2021b) can
be reformulated a generation problems by providing appropriate prompts. Therefore, prompting methods (i)
broaden the applicability of these generation-oriented pre-trained models. For example, pre-trained models
like BART are less used in NER while prompting methods make BART applicable, and (ii) breaks the
difficulty of unified modelling among different tasks (Khashabi et al., 2020).

4 Prompt Engineering
Prompt engineering is the process of creating a prompting function fprompt(x) that results in the most effective
performance on the downstream task. In many previous works, this has involved prompt template engineering,
where a human engineer or algorithm searches for the best template for each task the model is expected to perform.
As shown in the “Prompt Engineering” section of Fig.1, one must first consider the prompt shape, and then decide
whether to take a manual or automated approach to create prompts of the desired shape, as detailed below.

4.1 Prompt Shape
As noted above, there are two main varieties of prompts: cloze prompts (Petroni et al., 2019; Cui et al., 2021), which
fill in the blanks of a textual string, and prefix prompts (Li and Liang, 2021; Lester et al., 2021), which continue a
string prefix. Which one is chosen will depend both on the task and the model that is being used to solve the task. In
general, for tasks regarding generation, or tasks being solved using a standard auto-regressive LM, prefix prompts
tend to be more conducive, as they mesh well with the left-to-right nature of the model. For tasks that are solved
using masked LMs, cloze prompts are a good fit, as they very closely match the form of the pre-training task. Full
text reconstruction models are more versatile, and can be used with either cloze or prefix prompts. Finally, for some
tasks regarding multiple inputs such as text pair classification, prompt templates must contain space for two inputs,
[X1] and [X2], or more.

4.2 Manual Template Engineering
Perhaps the most natural way to create prompts is to manually create intuitive templates based on human introspec-
tion. For example, the seminal LAMA dataset (Petroni et al., 2019) provides manually created cloze templates to
probe knowledge in LMs. Brown et al. (2020) create manually crafted prefix prompts to handle a wide variety of
tasks, including question answering, translation, and probing tasks for common sense reasoning. Schick and Schütze
(2020, 2021a,b) use pre-defined templates in a few-shot learning setting on text classification and conditional text
generation tasks.

4.3 Automated Template Learning
While the strategy of manually crafting templates is intuitive and does allow solving various tasks with some degree
of accuracy, there are also several issues with this approach: (1) creating and experimenting with these prompts is
an art that takes time and experience, particularly for some complicated tasks such as semantic parsing (Shin et al.,
2021); (2) even experienced prompt designers may fail to manually discover optimal prompts (Jiang et al., 2020c).

To address these problems, a number of methods have been proposed to automate the template design process. In
particular, the automatically induced prompts can be further separated into discrete prompts, where the prompt is an

11



4.3 Automated Template Learning

actual text string, and continuous prompts, where the prompt is instead described directly in the embedding space of
the underlying LM.

One other orthogonal design consideration is whether the prompting function fprompt(x) is static, using essentially
the same prompt template for each input, or dynamic, generating a custom template for each input. Both static and
dynamic strategies have been used for different varieties of discrete and continuous prompts, as we will mention
below.

4.3.1 Discrete Prompts
Works on discovering discrete prompts (a.k.a hard prompts) automatically search for templates described in a
discrete space, usually corresponding to natural language phrases. We detail several methods that have been
proposed for this below:

D1: Prompt Mining Jiang et al. (2020c)’s MINE approach is a mining-based method to automatically find
templates given a set of training inputs x and outputs y. This method scrapes a large text corpus (e.g. Wikipedia) for
strings containing x and y, and finds either the middle words or dependency paths between the inputs and outputs.
Frequent middle words or dependency paths can serve as a template as in “[X] middle words [Z]”.

D2: Prompt Paraphrasing Paraphrasing-based approaches take in an existing seed prompt (e.g. manually
constructed or mined), and paraphrases it into a set of other candidate prompts, then selects the one that achieves the
highest training accuracy on the target task. This paraphrasing can be done in a number of ways, including using
round-trip translation of the prompt into another language then back (Jiang et al., 2020c), using replacement of
phrases from a thesaurus (Yuan et al., 2021b), or using a neural prompt rewriter specifically optimized to improve
accuracy of systems using the prompt (Haviv et al., 2021). Notably, Haviv et al. (2021) perform paraphrasing after
the input x is input into the prompt template, allowing a different paraphrase to be generated for each individual
input.

D3: Gradient-based Search Wallace et al. (2019a) applied a gradient-based search over actual tokens to find
short sequences that can trigger the underlying pre-trained LM to generate the desired target prediction. This search
is done in an iterative fashion, stepping through tokens in the prompt . Built upon this method, Shin et al. (2020)
automatically search for template tokens using downstream application training samples and demonstrates strong
performance in prompting scenarios.

D4: Prompt Generation Other works treat the generation of prompts as a text generation task and use standard
natural language generation models to perform this task. For example, Gao et al. (2021) introduce the seq2seq
pre-trained model T5 into the template search process. Since T5 has been pre-trained on a task of filling in missing
spans, they use T5 to generate template tokens by (1) specifying the position to insert template tokens within a
template4 (2) provide training samples for T5 to decode template tokens. Ben-David et al. (2021) propose a domain
adaptation algorithm that trains T5 to generate unique domain relevant features (DRFs; a set of keywords that
characterize domain information) for each input. Then those DRFs can be concatenated with the input to form a
template and be further used by downstream tasks.

D5: Prompt Scoring Davison et al. (2019) investigate the task of knowledge base completion and design a
template for an input (head-relation-tail triple) using LMs. They first hand-craft a set of templates as potential
candidates, and fill the input and answer slots to form a filled prompt. They then use a unidirectional LM to score
those filled prompts, selecting the one with the highest LM probability. This will result in custom template for each
individual input.

4.3.2 Continuous Prompts
Because the purpose of prompt construction is to find a method that allows an LM to effectively perform a task,
rather than being for human consumption, it is not necessary to limit the prompt to human-interpretable natural
language. Because of this, there are also methods that examine continuous prompts (a.k.a. soft prompts) that perform
prompting directly in the embedding space of the model. Specifically, continuous prompts remove two constraints:
(1) relax the constraint that the embeddings of template words be the embeddings of natural language (e.g., English)
words. (2) Remove the restriction that the template is parameterized by the pre-trained LM’s parameters. Instead,
templates have their own parameters that can be tuned based on training data from the downstream task. We
highlight several representative methods below.

4The number of template tokens do not need to be pre-specified since T5 can decode multiple tokens at a masked position.

12



C1: Prefix Tuning Prefix Tuning (Li and Liang, 2021) is a method that prepends a sequence of continuous
task-specific vectors to the input, while keeping the LM parameters frozen. Mathematically, this consists of
optimizing over the following log-likelihood objective given a trainable prefix matrix Mφ and a fixed pre-trained
LM parameterized by θ.

max
φ

logP (y|x; θ;φ) = max
φ

∑
yi

logP (yi|h<i; θ;φ) (2)

In Eq. 2, h<i = [h
(1)
<i ; · · · ;h

(n)
<i ] is the concatenation of all neural network layers at time step i. It is copied from

Mφ directly if the corresponding time step is within the prefix (hi is Mφ[i]), otherwise it is computed using the
pre-trained LM.

Experimentally, Li and Liang (2021) observe that such continuous prefix-based learning is more sensitive to
different initialization in low-data settings than the use of discrete prompts with real words. Similarly, Lester et al.
(2021) prepend the input sequence with special tokens to form a template and tune the embeddings of these tokens
directly. Compared to Li and Liang (2021)’s method, this adds fewer parameters as it doesn’t introduce additional
tunable parameters within each network layer. Tsimpoukelli et al. (2021) train a vision encoder that encodes an
image into a sequence of embeddings that can be used to prompt a frozen auto-regressive LM to generate the
appropriate caption. They show that the resulting model can perform few-shot learning for vision-language tasks
such as visual question answering etc. Different from the above two works, the prefix used in (Tsimpoukelli et al.,
2021) is sample-dependent, namely a representation of input images, instead of a task embedding.

C2: Tuning Initialized with Discrete Prompts There are also methods that initialize the search for a continuous
prompt using a prompt that has already been created or discovered using discrete prompt search methods. For
example, Zhong et al. (2021b) first define a template using a discrete search method such as AUTOPROMPT (Shin
et al., 2020)’s, initialize virtual tokens based on this discovered prompt, then fine-tune the embeddings to increase
task accuracy. This work found that initializing with manual templates can provide a better starting point for the
search process. Qin and Eisner (2021) propose to learn a mixture of soft templates for each input where the weights
and parameters for each template are jointly learned using training samples. The initial set of templates they use are
either manually crafted ones or those obtained using the “prompt mining” method. Similarly, Hambardzumyan et al.
(2021) introduce the use of a continuous template whose shape follows a manual prompt template.

C3: Hard-Soft Prompt Hybrid Tuning Instead of using a purely learnable prompt template, these methods insert
some tunable embeddings into a hard prompt template. Liu et al. (2021b) propose “P-tuning”, where continuous
prompts are learned by inserting trainable variables into the embedded input. To account for interaction between
prompt tokens, they represent prompt embeddings as the output of a BiLSTM (Graves et al., 2013). P-tuning also
introduces the use of task-related anchor tokens (such as “capital” in relation extraction) within the template for
further improvement. These anchor tokens are not tuned during training. Han et al. (2021) propose prompt tuning
with rules (PTR), which uses manually crafted sub-templates to compose a complete template using logic rules. To
enhance the representation ability of the resulting template, they also insert several virtual tokens whose embeddings
can be tuned together with the pre-trained LMs parameters using training samples. The template tokens in PTR
contain both actual tokens and virtual tokens. Experiment results demonstrate the effectiveness of this prompt
design method in relation classification tasks.

5 Answer Engineering
In contrast to prompt engineering, which designs appropriate inputs for prompting methods, answer engineering
aims to search for an answer space Z and a map to the original output Y that results in an effective predictive model.
Fig.1’s “Answer Engineering” section illustrates two dimensions that must be considered when performing answer
engineering: deciding the answer shape and choosing an answer design method.

5.1 Answer Shape
The shape of an answer characterizes its granularity. Some common choices include:

• Tokens: One of the tokens in the pre-trained LM’s vocabulary, or a subset of the vocabulary.

• Span: A short multi-token span. These are usually used together with cloze prompts.

• Sentence: A sentence or document. These are commonly used with prefix prompts.

In practice, how to choose the shape of acceptable answers depends on the task we want to perform. Token or
text-span answer spaces are widely used in classification tasks (e.g. sentiment classification; Yin et al. (2019)),
but also other tasks such as relation extraction (Petroni et al., 2019) or named entity recognition (Cui et al., 2021).
Longer phrasal or sentential answers are often used in language generation tasks (Radford et al., 2019), but also

13


