Input | Subject: China; Relation: isCapital Input | Add up two numbers: 6, 8

PR1 { China’s capital is [MASK]. Ans-PRI' | 1+1=2

-

14
PRZ{ [MASK] is the capital of China. Ans-PR2 [2+5=9 ]
PR3[ The capital of China is [MASK]. L>PR 6 + 8 = [MASK]

(a) Prompt Ensembling. (b) Prompt Augmentation.

Input (X) | Google became a subsidiary of Alphabet. Input (X) | Mike went to New York yesterday.

Sub-PR1  [X] The [MASK] Google. | pr | DX Mike is [MASK] entity type,
New York is [MASK] entity type.
Sub-PR2 [ [X] The [MASK] Alphabet. | 1
Sub-PR3 | [X] Google [MASK] Alphabet. | Sub-PR1 [ [X] Mike is [MASK] entity type. |
PR T

Sub-PR2 {[X] New York is [MASK] entity type.

| [X] The [MASK] Google [MASK] the [MASK] Alphabet. |—>

(c) Prompt Composition. (d) Prompt Decomposition.

Figure 4: Different multi-prompt learning strategies. We use different colors to differentiate different components as
follows. “ ” for input text, “ ) for prompt, “ ” for answered prompt. “ 3 for sub-prompt. We use the
following abbreviations. “PR” for prompt, “Ans-PR” for answered prompt, “Sub-PR” for sub-prompt.

class together with prompt token embeddings. Since the answer tokens are optimized directly in the embedding
space, they do not make use of the embeddings learned by the LM and instead learn an embedding from scratch for
each label.

6 Multi-Prompt Learning

The prompt engineering methods we discussed so far focused mainly on constructing a single prompt for an input.
However, a significant body of research has demonstrated that the use of multiple prompts can further improve the
efficacy of prompting methods, and we will call these methods multi-prompt learning methods. In practice, there are
several ways to extend the single prompt learning to the use multiple prompts, which have a variety of motivations.
We summarize representative methods in the “Multi-prompt Learning” section of Fig.1 as well as Fig.4.

6.1 Prompt Ensembling

Prompt ensembling is the process of using multiple unanswered prompts for an input at inference time to make
predictions. An example is shown in Fig. 4-(a). The multiple prompts can either be discrete prompts or continuous
prompts.> This sort of prompt ensembling can (1) leverage the complementary advantages of different prompts, (2)
alleviate the cost of prompt engineering, since choosing one best-performing prompt is challenging, (3) stabilize
performance on downstream tasks.

Prompt ensembling is connected to ensembling methods that are used to combine together multiple systems,
which have a long history in machine learning (Ting and Witten, 1997; Zhou et al., 2002; Duh et al., 2011). Current
research also borrows ideas from these works to derive effective ways for prompt ensembling, as described below.

Uniform averaging The most intuitive way to combine the predictions when using multiple prompts is to take the
average of probabilities from different prompts. Concretely, this indicates that P(z|x) = + ZZK P (2| forompt,i (x))
where fprompt,i (+) is the ith prompt in the prompt ensemble. Jiang et al. (2020c) first filter their prompts by selecting
K prompts that achieve the highest accuracy on the training set, and then use the average log probabilities obtained
from the top K prompts to calculate the probability for a single token at [Z] position when performing factual
probing tasks. Schick and Schiitze (2021a) also try a simple average when using an ensemble model to annotate an
unlabeled dataset. When performing text generation evaluation, Yuan et al. (2021b) formulates this task as a text
generation problem and take the average of the final generation scores obtained using different prompts.

Weighted averaging Simple uniform averaging of results from multiple prompts is easy to implement, but can
also be suboptimal given that some prompts are more performant than others. To account for this, some works also

>Multiple continuous prompts are typically learned by using different initializations or different random seeds.

15



6.2 Prompt Augmentation

explore to use of weighted averages for prompt ensembling where each prompt is associated with a weight. The
weights are typically pre-specified based on prompt performance or optimized using a training set. For example,
Jiang et al. (2020c) learn the weight for each prompt by maximizing the probability of the target output over training
data. Qin and Eisner (2021) use the same approach except that the weight for each prompt is optimized together
with soft prompt parameters. Besides, Qin and Eisner (2021) also introduce a data-dependent weighting strategy
where the probability of the input appearing in that prompt is considered in weighting different prompts as well.
Schick and Schiitze (2021a,b) set the weight for each prompt proportional to the accuracy on the training set before
training.

Majority voting For classification tasks, majority voting can also be used to combine the results from different
prompts (Lester et al., 2021; Hambardzumyan et al., 2021).

Knowledge distillation An ensemble of deep learning models can typically improve the performance, and this
superior performance can be distilled into a single model using knowledge distillation (Allen-Zhu and Li, 2020).
To incorporate this idea, Schick and Schiitze (2021a,b, 2020) train a separate model for each manually-created
template-answer pair, and use the ensemble of them to annotate an unlabeled dataset. Then the final model is
trained to distill the knowledge from the annotated dataset. Gao et al. (2021) use a similar ensemble method on their
automatically generated templates.

Prompt ensembling for text generation There is relatively little work on prompt ensembling for generation
tasks (i.e. tasks where the answers is a string of tokens instead of a single one). A simple way to perform ensembling
in this case is to use standard methods that generate the output based on the ensembled probability of the next word
in the answer sequence P(z|@, 2<;) == & ZZK P (2| forompt,i (), 2<¢). In contrast, Schick and Schiitze (2020)
train a separate model for each prompt fprompe,i (), and thus storing each of these fine-tuned LMs in memory is
infeasible. Instead, they first decode generations using each model and then score each generation by averaging
their generation probability across all models.

6.2 Prompt Augmentation

Prompt augmentation, also sometimes called demonstration learning (Gao et al., 2021), provides a few additional
answered prompts that can be used to demonstrate how the LM should provide the answer to the actual prompt
instantiated with the input x. For example, instead of just providing a prompt of “China’s capital is [Z] .”, the
prompt can be prefaced by a few examples such as “Great Britain’s capital is London . Japan’s capital is Tokyo .
China’s capital is [Z] .” Another example of performing addition of two numbers can be found in Fig. 4-(b). These
few-shot demonstrations take advantage of the ability of strong language models to learn repetitive patterns (Brown
et al., 2020).

Although the idea of prompt augmentation is simple, there are several aspects that make it challenging: (1)
Sample Selection: how to choose the most effective examples? (2) Sample Ordering: How to order the chosen
examples with the prompt?

Sample Selection Researchers have found that the choice of examples used in this few-shot scenario can result in
very different performance, ranging from near state-of-the-art accuracy on some tasks to near random guess (Lu
et al., 2021). To address this issue, Gao et al. (2021); Liu et al. (2021a) utilize sentence embeddings to sample
examples that are close to the input in this embedding space. To measure the generalization capability of pre-trained
LMs to perform new tasks based on instructions, Mishra et al. (2021) provide both positive samples and negative
samples that highlight things to avoid.

Sample Ordering Lu et al. (2021) found that the order of answered prompts provided to the model plays an
important role in model performance, and propose entropy-based methods to score different candidate permutations.
Kumar and Talukdar (2021) search for a good permutation of training examples as augmented prompts and learn a
separator token between the prompts for further gains in performance.

Prompt augmentation is closely related to retrieval-based methods that provide more textual context to the model
to improve performance (Guu et al., 2018), a method which has also been shown to be effective in prompt-based
learning (Petroni et al., 2020). However, the key difference lies in the fact that prompt augmentation also leverages
the template and answer, while larger context learning does not.

6.3 Prompt Composition

For those composable tasks, which can be composed based on more fundamental subtasks, we can also perform
prompt composition, using multiple sub-prompts, each for one subtask, and then defining a composite prompt based
on those sub-prompts. This process is illustrated in Fig. 4-(c). For example, in the relation extraction task, which
aims to extract the relation of two entities, we can break down the task into several subtasks including identifying
the characteristics of entities and classifying the relationships between entities. Based on this intuition, Han et al.

16



6.4 Prompt Decomposition

(2021) first use multiple manually created sub-prompts for entity recognition and relation classification and then
compose them into a complete prompt based on logic rules for relation extraction.

6.4 Prompt Decomposition

For tasks where multiple predictions should be performed for one sample (e.g., sequence labeling), directly defining
a holistic prompt with regards to the entire input text  is challenging. One intuitive method to address this problem
is to break down the holistic prompt into different sub-prompts, and then answer each sub-prompt separately.
Fig.4-(d) illustrates this idea with an example from the named entity recognition task, which aims to identify all
named entities in an input sentence. In this case, the input will first be converted into a set of text spans, and the
model can then be prompted to predict the entity type (including “Not an Entity”) for each span. It is not easy to
predict all the span types at the same time due to the large number of spans, so different prompts for each span
can be created and predicted separately. This sort of prompt decomposition for named entity recognition has been
explored by Cui et al. (2021) where they apply the approach we discussed here.

7 Training Strategies for Prompting Methods

With the methods in the above sections, it is now clear how to obtain an appropriate prompt (or prompts) and
corresponding answers. Now we discuss about methods that explicitly train models in concert with prompting
methods, as outlined in the “Training Strategies” section of Fig.1.

7.1 Training Settings

In many cases, prompting methods can be used without any explicit training of the LM for the down-stream task,
simply taking an LM that has been trained to predict the probability of text P(x) and applying it as-is to fill the
cloze or prefix prompts defined to specify the task. This is traditionally called the zero-shot setting, as there is zero
training data for the task of interest.

However, there are also methods that use training data to train the model in concert with prompting methods.
These consist of either full-data learning, where a reasonably large number of training examples are used to train
the model, or few-shot learning where a very small number of examples are used to train the model. Prompting
methods are particularly useful in the latter case, as there are generally not enough training examples to fully specify
the desired behavior, and thus using a prompt to push the model in the right direction is particularly effective.

One thing to note is that for many of the prompt engineering methods described in §4, although annotated training
samples are not explicitly used in the training of the downstream task model, they are often used in the construction
or validation of the prompts that the downstream task will use. As noted by Perez et al. (2021), this is arguably not
true zero-shot learning with respect to the downstream task.

7.2 Parameter Update Methods

In prompt-based downstream task learning, there are usually two types of parameters, namely those from (1)
pre-trained models and (2) prompts. Which part of parameters should be updated is one important design decision,
which can lead to different levels of applicability in different scenarios. We summarize five tuning strategies (as
shown in Tab. 6) based on (i) whether the parameters of the underlying LM are tuned, (ii) whether there are additional
prompt-related parameters, (iii) if there are additional prompt-related parameters, whether those parameters are
tuned.

Prompt Params

Strategy LM Params Additional Tuned Example

Promptless Fine-tuning Tuned - ELMo [130], BERT [32], BART [94]
Tuning-free Prompting Frozen X X GPT-3 [16], AutoPrompt [159], LAMA [133]
Fixed-LM Prompt Tuning  Frozen v Tuned  Prefix-Tuning [96], Prompt-Tuning [91]
Fixed-prompt LM Tuning  Tuned X X PET-TC [153], PET-Gen [152], LM-BFF [46]
Prompt+LM Fine-tuning Tuned v Tuned PADA [8], P-Tuning [103], PTR [56]

Table 6: Characteristics of different tuning strategies. “Additional” represents if there are additional parameters
beyond LM parameters while “Tuned” denotes if parameters are updated.

17



