
Paradigm Engineering Task Relation

a. Fully Supervised Learning
(Non-Neural Network)

Features
(e.g. word identity, part-of-speech,
sentence length)

CLS TAG

GEN

CLS TAG

TAGCLS

GEN

GEN

LM

LM

LM
b. Fully Supervised Learning
(Neural Network)

Architecture
(e.g. convolutional, recurrent,
self-attentional)

CLS TAG

GEN

CLS TAG

TAGCLS

GEN

GEN

LM

LM

LM

c. Pre-train, Fine-tune
Objective
(e.g. masked language modeling,
next sentence prediction)

CLS TAG

GEN

CLS TAG

TAGCLS

GEN

GEN

LM

LM

LM

d. Pre-train, Prompt, Predict Prompt (e.g. cloze, prefix)

CLS TAG

GEN

CLS TAG

TAGCLS

GEN

GEN

LM

LM

LM

Table 1: Four paradigms in NLP. The “engineering” column represents the type of engineering to be done to build
strong systems. The “task relation” column, shows the relationship between language models (LM) and other NLP
tasks (CLS: classification, TAG: sequence tagging, GEN: text generation).

Task1 Task2

Task3

Task1 Task2

Task3

Task1 Task2

Task3

Task1 Task2

Task3

Task1 Task2

Task3

Task1 Task2

Task3

: fully unsupervised training.

Task1 Task2

Task3

Task1 Task2

Task3

Task1 Task2

Task3

Task1 Task2

Task3

Task1 Task2

Task3

Task1 Task2

Task3

: fully
supervised training.

Task1 Task2

Task3

Task1 Task2

Task3

Task1 Task2

Task3

TC POS

MT

TC POS

MT

TC POS

MT

TC POS

SUM

TC POS

POSTC

SUM

SUM

PLM

PLM

PLM : Supervised training combined with unsupervised training.

CLS TAG

GEN

CLS TAG

TAGCLS

GEN

GEN

LM

LM

LM

indicates a textual prompt.
Dashed lines suggest that different tasks can be connected by sharing parameters of pre-trained models. “LM→Task”
represents adapting LMs (objectives) to downstream tasks while “Task→LM” denotes adapting downstream tasks
(formulations) to LMs.

• Tab.7: A systematic and comprehensive comparison among different prompting methods.
• Tab.10: An organization of commonly-used prompts.
• Tab.12: A timeline of prompt-based research works.
• Tab.13: A systematic and comprehensive comparison among different pre-trained LMs.

2 A Formal Description of Prompting
2.1 Supervised Learning in NLP
In a traditional supervised learning system for NLP, we take an input x, usually text, and predict an output y based
on a model P (y|x; θ). y could be a label, text, or other variety of output. In order to learn the parameters θ of
this model, we use a dataset containing pairs of inputs and outputs, and train a model to predict this conditional
probability. We will illustrate this with two stereotypical examples.

First, text classification takes an input text x and predicts a label y from a fixed label set Y . To give an example,
sentiment analysis (Pang et al., 2002; Socher et al., 2013) may take an input x =“I love this movie.” and predict a
label y = ++, out of a label set Y = {++,+,~, -, --}.

Second, conditional text generation takes an input x and generates another text y. One example is machine
translation (Koehn, 2009), where the input is text in one language such as the Finnish x = “Hyvää huomenta.” and
the output is the English y = “Good morning”..

2.2 Prompting Basics
The main issue with supervised learning is that in order to train a model P (y|x; θ), it is necessary to have supervised
data for the task, which for many tasks cannot be found in large amounts. Prompt-based learning methods for NLP
attempt to circumvent this issue by instead learning an LM that models the probability P (x; θ) of text x itself
(details in §3) and using this probability to predict y, reducing or obviating the need for large supervised datasets. In
this section we lay out a mathematical description of the most fundamental form of prompting, which encompasses
many works on prompting and can be expanded to cover others as well. Specifically, basic prompting predicts the
highest-scoring ŷ in three steps.

4



2.2 Prompting Basics

Name Notation Example Description

Input x I love this movie. One or multiple texts
Output y ++ (very positive) Output label or text

Prompting
Function fprompt(x) [X] Overall, it was a [Z] movie.

A function that converts the input into a
specific form by inserting the input x and
adding a slot [Z] where answer z may
be filled later.

Prompt x′ I love this movie. Overall, it was a [Z] movie. A text where [X] is instantiated by input
x but answer slot [Z] is not.

Filled Prompt ffill(x
′,z) I love this movie. Overall, it was a bad movie. A prompt where slot [Z] is filled with

any answer.
Answered
Prompt ffill(x

′,z∗) I love this movie. Overall, it was a good movie. A prompt where slot [Z] is filled with a
true answer.

Answer z “good”, “fantastic”, “boring” A token, phrase, or sentence that fills [Z]

Table 2: Terminology and notation of prompting methods. z∗ represents answers that correspond to true output y∗.

2.2.1 Prompt Addition
In this step a prompting function fprompt(·) is applied to modify the input text x into a prompt x′ = fprompt(x). In
the majority of previous work (Kumar et al., 2016; McCann et al., 2018; Radford et al., 2019; Schick and Schütze,
2021a), this function consists of a two step process:

1. Apply a template, which is a textual string that has two slots: an input slot [X] for input x and an answer slot
[Z] for an intermediate generated answer text z that will later be mapped into y.

2. Fill slot [X] with the input text x.

In the case of sentiment analysis where x =“I love this movie.”, the template may take a form such as “[X]
Overall, it was a [Z] movie.”. Then, x′ would become “I love this movie. Overall it was a [Z] movie.” given the
previous example. In the case of machine translation, the template may take a form such as “Finnish: [X] English:
[Z]”, where the text of the input and answer are connected together with headers indicating the language. We show
more examples in Tab. 3

Notably, (1) the prompts above will have an empty slot to fill in for z, either in the middle of the prompt or at the
end. In the following text, we will refer to the first variety of prompt with a slot to fill in the middle of the text as a
cloze prompt, and the second variety of prompt where the input text comes entirely before z as a prefix prompt. (2)
In many cases these template words are not necessarily composed of natural language tokens; they could be virtual
words (e.g. represented by numeric ids) which would be embedded in a continuous space later, and some prompting
methods even generate continuous vectors directly (more in §4.3.2). (3) The number of [X] slots and the number
of [Z] slots can be flexibly changed for the need of tasks at hand.

2.2.2 Answer Search
Next, we search for the highest-scoring text ẑ that maximizes the score of the LM. We first define Z as a
set of permissible values for z. Z could range from the entirety of the language in the case of generative
tasks, or could be a small subset of the words in the language in the case of classification, such as defining
Z = {“excellent”, “good”, “OK”, “bad”, “horrible”} to represent each of the classes in Y = {++,+,~, -, --}.

We then define a function ffill(x
′, z) that fills in the location [Z] in prompt x′ with the potential answer z. We

will call any prompt that has gone through this process as a filled prompt. Particularly, if the prompt is filled with a
true answer, we will refer to it as an answered prompt (Tab. 2 shows an example). Finally, we search over the set
of potential answers z by calculating the probability of their corresponding filled prompts using a pre-trained LM
P (·; θ)

ẑ = search
z∈Z

P (ffill(x
′, z); θ). (1)

This search function could be an argmax search that searches for the highest-scoring output, or sampling that
randomly generates outputs following the probability distribution of the LM.

2.2.3 Answer Mapping
Finally, we would like to go from the highest-scoring answer ẑ to the highest-scoring output ŷ. This is trivial in
some cases, where the answer itself is the output (as in language generation tasks such as translation), but there

5



2.3 Design Considerations for Prompting

Type Task Input ([X]) Template Answer ([Z])

Text CLS

Sentiment I love this movie. [X] The movie is [Z].
great
fantastic
...

Topics He prompted the LM. [X] The text is about [Z].
sports
science
...

Intention What is taxi fare to Denver? [X] The question is about [Z].
quantity
city
...

Text-span CLS Aspect
Sentiment Poor service but good food.

Bad
[X] What about service? [Z]. Terrible

...

Text-pair CLS NLI
[X1]: An old man with ...

[X1]? [Z], [X2]
Yes

[X2]: A man walks ... No
...

Tagging
[X1]: Mike went to Paris. organization

NER [X2]: Paris [X1][X2] is a [Z] entity. location
...

Text Generation

Summarization Las Vegas police ... [X] TL;DR: [Z]
The victim ...
A woman ...
...

Translation Je vous aime. French: [X] English: [Z]
I love you.
I fancy you.
...

Table 3: Examples of input, template, and answer for different tasks. In the Type column, “CLS” is an abbreviation
for “classification”. In the Task column, “NLI” and “NER” are abbreviations for “natural language inference” (Bow-
man et al., 2015) and “named entity recognition” (Tjong Kim Sang and De Meulder, 2003) respectively.

are also other cases where multiple answers could result in the same output. For example, one may use multiple
different sentiment-bearing words (e.g. “excellent”, “fabulous”, “wonderful”) to represent a single class (e.g. “++”),
in which case it is necessary to have a mapping between the searched answer and the output value.

2.3 Design Considerations for Prompting
Now that we have our basic mathematical formulation, we elaborate a few of the basic design considerations that go
into a prompting method, which we will elaborate in the following sections:

• Pre-trained Model Choice: There are a wide variety of pre-trained LMs that could be used to calculate
P (x; θ). In §3 we give a primer on pre-trained LMs, specifically from the dimensions that are important for
interpreting their utility in prompting methods.

• Prompt Engineering: Given that the prompt specifies the task, choosing a proper prompt has a large effect not
only on the accuracy, but also on which task the model performs in the first place. In §4 we discuss methods to
choose which prompt we should use as fprompt(x).

• Answer Engineering: Depending on the task, we may want to design Z differently, possibly along with the
mapping function. In §5 we discuss different ways to do so.

• Expanding the Paradigm: As stated above, the above equations represent only the simplest of the various
underlying frameworks that have been proposed to do this variety of prompting. In §6 we discuss ways to
expand this underlying paradigm to further improve results or applicability.

• Prompt-based Training Strategies: There are also methods to train parameters, either of the prompt, the LM,
or both. In §7, we summarize different strategies and detail their relative advantages.

6



2.3 Design Considerations for Prompting

Prompting
Method

Pre-trained
Models §3

Left-to-
Right LM GPT [139]; GPT-2 [140]; GPT-3 [16]

Masked LM BERT [32]; RoBERTa [105]

Prefix LM UniLM1 [35]; UniLM2 [6]

Encoder-
Decoder

T5 [141]; MASS [162]; BART [94]

Prompt En-
gineering §4 Shape Cloze LAMA [133]; TemplateNER [29]

Prefix
Prefix-Tuning [96];
PromptTuning [91]

Human Effort Hand-crafted LAMA [133]; GPT-3 [16]

Automated Discrete AdvTrigger [177]; AutoPrompt [159]

Continuous
Prefix-Tuning [96];
PromptTuning [91]

Answer En-
gineering §5 Shape

Token LAMA [133]; WARP [55]

Span PET-GLUE [154]; X-FACTR [66]

Sentence GPT-3 [16]; Prefix-Tuning [96]

Human Effort Hand-crafted PET-TC [153]; PET-GLUE [154]

Automated Discrete AutoPrompt [159]; LM-BFF [46]

Continuous WARP [55]

Multi-Prompt
Learning §6

Prompt
Ensemble

LPAQA [68]; PET-
TC [153]; BARTScore [193]

Prompt
Augmentation

GPT-3 [16]; KATE [100];
LM-BFF [46]

Prompt
Composition PTR [56]

Prompt De-
composition TemplateNER [29]

Prompt
Sharing Example Fig. 5

Prompt-based
Training

Strategies §7

Parameter
Updating

Promptless
Fine-tuning BERT [32]; RoBERTa [105]

Tuning-free
Prompting GPT-3 [16]; BARTScore [193]

Fixed-LM
Prompt
Tuning

Prefix-Tuning [96]; WARP [55]

Fixed-prompt
LM Tuning T5 [141]; PET-TC [154]

Prompt+LM
Tuning P-Tuning [103]; PTR [56]

Training
Sample Size

Few/zero-
shot

GPT-3 [16]; PET-TC [153]

Full-data PTR [56]; AdaPrompt [21]

Figure 1: Typology of prompting methods.
7


