
7.2.5 Prompt+LM Tuning
In this setting, there are prompt-relevant parameters, which can be fine-tuned together with the all or some of the
parameters of the pre-trained models. Representative examples include PADA [8], P-Tuning [103]. Notably, this
setting is very similar to the standard pre-train and fine-tune paradigm, but the addition of the prompt can provide
additional bootstrapping at the start of model training.

• Advantages: This is the most expressive method, likely suitable for high-data settings.
• Disadvantages: Requires training and storing all parameters of the models. May overfit to small datasets.

8 Applications
In previous sections, we examined prompting methods from the point of view of the mechanism of the method itself.
In this section, we rather organize prompting methods from the point of view of which applications they have been
applied to. We list these applications in Tab. 7-8 and summarize them in the following sections.

8.1 Knowledge Probing
Factual Probing Factual probing (a.k.a. fact retrieval) is one of the earliest scenarios with respect to which
prompting methods were applied. The motivation of exploring this task is to quantify how much factual knowledge
the pre-trained LM’s internal representations bear. In this task, parameters of pre-trained models are usually fixed,
and knowledge is retrieved by transforming the original input into a cloze prompt as defined in §2.2, which can
be manually crafted or automatically discovered. Relevant datasets including LAMA (Petroni et al., 2019) and
X-FACTR (Jiang et al., 2020a). Since the answers are pre-defined, fact retrieval only focuses on finding effective
templates and analyzing the results of different models using these templates. Both discrete template search (Petroni
et al., 2019, 2020; Jiang et al., 2020c,a; Haviv et al., 2021; Shin et al., 2020; Perez et al., 2021) and continuous
template learning (Qin and Eisner, 2021; Liu et al., 2021b; Zhong et al., 2021b) have been explored within this
context, as well as prompt ensemble learning (Jiang et al., 2020c; Qin and Eisner, 2021).

Linguistic Probing Besides factual knowledge, large-scale pre-training also allows LMs to handle linguistic
phenomena such as analogies (Brown et al., 2020), negations (Ettinger, 2020), semantic role sensitivity (Ettinger,
2020), semantic similarity (Sun et al., 2021), cant understanding (Sun et al., 2021), and rare word understanding
(Schick and Schütze, 2020). The above knowledge can also be elicited by presenting linguistic probing tasks in the
form of natural language sentences that are to be completed by the LM.

8.2 Classification-based Tasks
Prompt-based learning has been widely explored in classification-based tasks where prompt templates can be
constructed relatively easily, such as text classification (Yin et al., 2019) and natural language inference (Schick and
Schütze, 2021a). The key to prompting for classification-based tasks is reformulating it as an appropriate prompt.
For example, Yin et al. (2019) use a prompt such as “the topic of this document is [Z].”, which is then fed into
mask pre-trained LMs for slot filling.

Text Classification For text classification tasks, most previous work has used cloze prompts, and both prompt
engineering (Gao et al., 2021; Hambardzumyan et al., 2021; Lester et al., 2021) and answer engineering (Schick
and Schütze, 2021a; Schick et al., 2020; Gao et al., 2021) have been explored extensively. Most existing works
explore the efficacy of prompt learning for text classification in the context of few-shot setting with “fixed-prompt
LM Tuning” strategies (defined in §7.2.4).

Natural Language Inference (NLI) NLI aims to predict the relationship (e.g., entailment) of two given
sentences. Similar to text classification tasks, for natural language inference tasks, cloze prompts are commonly
used (Schick and Schütze, 2021a). Regarding prompt engineering, researchers mainly focus on the template search
in the few-shot learning setting and the answer space Z is usually manually pre-selected from the vocabulary.
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8.2 Classification-based Tasks

Prompt Engineering Answer Engineering
Work Task PLM Setting

Shape Man Auto Shape Man Auto
Tuning Mul-Pr

LMComm [173] CR L2R Zero Clo ! - Sp ! - TFP -

CR,QA
GPT-2 [140]

SUM,MT
GPT-2 Zero,Few Clo,Pre ! - Tok,Sp,Sen ! - TFP PA

WNLaMPro [150] LCP BERT Zero Clo ! - Tok ! - TFP -

LMDiagnose [39] CR,LCP BERT Zero Clo ! - Tok ! - TFP -

AdvTrigger [177] GCG GPT-2 Full Pre - Disc Sen ! - TFP -

CohRank [31] CKM BERT Zero Clo ! - Tok,Sp ! - TFP -

Conv,Trans
LAMA [133] FP

ELMo,BERT
Zero Clo ! - Tok ! - TFP -

CTRL [75] GCG CTRL Full Pre ! - Sen ! - LMT -

TC,SUM
T5 [141]

QA,MT
T5 Full Pre ! - Tok,Sp,Sen ! - LMT -

Trans,ELMo
Neg & Mis [74] FP

BERT
Zero Clo ! - Tok ! - TFP -

LPAQA [68] FP BERT,ERNIE Full Clo ! Disc Tok ! - TFP PE

ZSC [135] TC GPT-2 Full Pre ! - Tok,Sp ! - LMT -

PET-TC [153] TC RoBERTa,XLM-R Few Pre ! - Tok ! Disc LMT PE

ContxFP [132] FP BERT,RoBERTa Zero Clo ! Disc Tok ! - TFP -

UnifiedQA [76] QA T5,BART Full Prefix ! - Tok,Sp,Sen ! - LMT -

RAG [95] QA,GCG,TC BART Full Pre - Disc Tok,Sp,Sen ! - LMPT PE

QA,MT,GCG
CR,TC,LCPGPT-3 [16]
MR,SR,AR

GPT-3 Zero,Few Clo,Pre ! - Tok,Sp,Sen ! - TFP PA

CommS2S [187] CR T5 Full Pre ! - Tok ! - LMT -

PET-SGLUE [154] TC ALBERT Few Clo ! - Tok,Sp ! - LMT PE

GPT-1,GPT-2
ToxicityPrompts [47] GCG

GPT-3,CTRL
Zero Pre ! - N/A TFP -

WhyLM [147] Theory GPT-2 Full Pre ! - Tok ! - PT -

mBERT,BERT
X-FACTR [66] FP

XLM,XLM-R
Zero Clo ! - Tok,Sp ! - TFP -

Petal [149] TC RoBERTa Few Clo ! - Tok - Disc LMT PE

AutoPrompt [159] TC,FP,IE BERT,RoBERTa Full Clo - Disc Tok - Disc TFP -

CTRLsum [59] SUM BART Full Pre ! - Sen ! - LMT -

PET-Gen [152] SUM PEGASUS Few Pre ! - Sen ! - LMT PE

LM-BFF [46] TC RoBERTa Few Clo - Disc Tok - Disc LMT PE,PA

WARP [55] TC RoBERTa Few,Full Clo,Pre ! Cont Tok ! Cont PT PE

Prefix-Tuning [96] D2T,SUM GPT-2,BART Full Pre - Cont Sen ! - PT -

KATE [100] TC,D2T,QA GPT-3 Few Pre ! - Tok,Sp,Sen ! - TFP PA

MT,MR
PromptProg [145]

AR,QA
GPT-3 Zero,Few Pre ! - Tok,Sp,Sen ! - TFP PA

ContxCalibrate [201] TC,FP,IE GPT-2,GPT-3 Few Pre ! - Tok,Sp ! - TFP PA

PADA [8] TC,TAG T5 Full Pre - Disc N/A LMPT -

SD [155] GCG GPT-2 Zero Pre ! - N/A TFP -

BERTese [58] FP BERT Full Clo ! Disc Tok ! - TFP -

Prompt2Data [148] TC RoBERTa Full Clo ! - Tok,Sp ! - LMT -

GPT-2,BERT
P-Tuning [103] FP,TC

ALBERT
Few,Full Clo,Pre ! Cont Tok,Sp ! - TFP,LMPT -

GLM [37] TC GLM Full Clo ! - Tok,Sp ! - LMT -

Table 7: An organization of works on prompting (Part 1). See the caption of Tab. 8 for a detailed description for all
the abbreviations used in this table.
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8.2 Classification-based Tasks

Prompt Engineering Answer Engineering
Work Task PLM Setting

Shape Man Auto Shape Man Auto
Tuning Mul-Pr

ADAPET [170] TC ALBERT Few Clo ! - Tok,Sp ! - LMT -

Meta [202] TC T5 Full Pre ! - Tok ! - LMT -

OptiPrompt [203] FP BERT Full Clo ! Cont Tok ! - PT -

BERT,BART
Soft [137] FP

RoBERTa
Full Clo ! Cont Tok ! - PT PE

DINO [151] GCG GPT-2 Zero Pre ! - N/A TFP -

AdaPrompt [21] IE BERT Few,Full Clo ! - Tok - Disc LMT -

PMIDC [62] GCG,QA,TC GPT-2,GPT-3 Zero Pre ! - Tok,Sp,Sen ! - TFP -

Prompt-Tuning [91] TC T5 Full Pre - Cont Tok,Sp ! - PT PE

Natural-Instr [120] GCG GPT-3,BART Few,Full Pre ! - Tok,Sp,Sen ! - TFP,LMT PA

OrderEntropy [111] TC GPT-2,GPT-3 Few Pre ! - Tok ! - TFP PA

FewshotSemp [158] SEMP GPT-3 Few Pre ! - Sen ! - TFP PA

QA,CR,TC
PanGu-α [194]

SUM,GCG
PanGu-α Zero,Few Clo,Pre ! - Tok,Sp,Sen ! - TFP PA

GPT-2,GPT-3
TrueFewshot [129] TC,FP

ALBERT
Few Clo,Pre ! Disc Tok,Sp ! - TFP,LMT -

PTR [56] IE RoBERTa Full Clo ! Cont Tok,Sp ! - LMPT PC

TemplateNER [29] TAG BART Few,Full Clo,Pre ! - Tok ! - LMT PD

PERO [83] TC,FP BERT,RoBERTa Few Pre ! - Tok ! - TFP PA

PromptAnalysis [181] Theory BERT Full Clo - Cont N/A PT -

QA,MR,SUM
CPM-2 [198]

TC,GCG,MT
CPM-2 Full Pre - Cont Tok,Sp,Sent ! - PT,LMPT -

BARTScore [193] EVALG BART Zero Pre ! Disc Sen ! - TFP PE

NullPrompt [109] TC RoBERTa,ALBERT Few Pre ! - Tok ! - LMPT -

Frozen [174] VQA,VFP,MG GPT-like Full Pre - Cont Sp (Visual) ! - PT PA

TC,LCP,NLI
CR,QA,SUMERNIE-B3 [167]
GCG

ERNIE-B3 Zero Clo,Pre ! - Tok,Sp,Sen ! - TFP -

Zero,Few
Codex [20] CodeGen GPT

Full
Pre ! - Span ! Disc TFP,LMT PA

Zero,Few
HTLM [1] TC,SUM BART

Full
Clo ! Disc Tok,Sp,Sen ! - LMT PA

FLEX [15] TC T5 Zero,Few Pre ! - Tok,Sp ! - LMT -

Table 8: An organization of works on prompting (Part 2). The Task column lists the tasks that are performed
in corresponding papers. We use the following abbreviations. CR: Commonsense Reasoning. QA: Question
Answering. SUM: Summarization. MT: Machine Translation. LCP: Linguistic Capacity Probing. GCG: General
Conditional Generation. CKM: Commonsense Knowledge Mining. FP: Fact Probing. TC: Text Classification. MR:
Mathematical Reasoning. SR: Symbolic Reasoning. AR: Analogical Reasoning. Theory: Theoretical Analysis.
IE: Information Extraction. D2T: Data-to-text. TAG: Sequence Tagging. SEMP: Semantic Parsing. EVALG:
Evaluation of Text Generation. VQA: Visual Question Answering. VFP: Visual Fact Probing. MG: Multimodal
Grounding. CodeGen: Code generation. The PLM column lists all the pre-trained LMs that have been used in
corresponding papers for downstream tasks. GPT-like is an autoregressive language model which makes small
modifications to the original GPT-2 architecture. For other pre-trained LMs, please refer to §3 for more information.
Setting column lists the settings for prompt-based learning, can be zero-shot learning (Zero), few-shot learning
(Few), fully supervised learning (Full). Under Prompt Engineering, Shape denotes the shape of the template
(Clo for cloze and Pre for prefix), Man denotes whether human effort is needed, Auto denotes data-driven search
methods (Disc for discrete search, Cont for continuous search). Under Answer Engineering, Shape indicates the
shape of the answer (Tok for token-level, Sp for span-level, Sen for sentence- or document-level), and Man and
Auto are the same as above. The Tuning column lists tuning strategies (§7). TFP: Tuning-free Prompting. LMT:
Fixed-prompt LM Tuning. PT: Fixed-LM Prompt Tuning. LMPT: LM+Prompt Tuning. The Mul-Pr column lists
multi-prompt learning methods. PA: Prompt Augmentation. PE: Prompt Ensembling. PC: Prompt Composition.
PD: Prompt Decomposition.
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8.3 Information Extraction

8.3 Information Extraction
Unlike classification tasks where cloze questions can often be intuitively constructed, for information extraction
tasks constructing prompts often requires more finesse.

Relation Extraction Relation extraction is a task of predicting the relation between two entities in a sentence.
Chen et al. (2021b) first explored the application of fixed-prompt LM Tuning in relation extraction and discuss two
major challenges that hinder the direct inheritance of prompting methodology from classification tasks: (1) The
larger label space (e.g. 80 in relation extraction v.s 2 in binary sentiment classification) results in more difficulty in
answer engineering. (2) In relation extraction, different tokens in the input sentence may be more or less important
(e.g. entity mentions are more likely to participate in a relation), which, however, can not be easily reflected in
the prompt templates for classification since the original prompt template regards each word equally. To address
the above problems, Chen et al. (2021b) propose an adaptive answer selection method to address the issue (1) and
task-oriented prompt template construction for the issue (2), where they use special markers (e.g. [E]) to highlight
the entity mentions in the template. Similarly, Han et al. (2021) incorporate entity type information via multiple
prompt composition techniques (illustrated in Fig. 4).

Semantic Parsing Semantic parsing is a task of generating a structured meaning representation given a natural
language input. Shin et al. (2021) explore the task of few-shot semantic parsing using LMs by (1) framing the
semantic parsing task as a paraphrasing task (Berant and Liang, 2014) and (2) constraining the decoding process
by only allowing output valid according to a grammar. They experiment with the in-context learning setting
described in §7.2.2, choosing answered prompts that are semantically close to a given test example (determined
by the conditional generation probability of generating a test sample given another training example). The results
demonstrate the effectiveness of the paraphrasing reformulation for semantic parsing tasks using pre-trained LMs.

Named Entity Recognition Named entity recognition (NER) is a task of identifying named entities (e.g., person
name, location) in a given sentence. The difficulty of prompt-based learning’s application to tagging tasks,
exemplified as NER, is that, unlike classification, (1) each unit to be predicted is a token or span instead of the
whole input text, (2) there is a latent relationship between the token labels in the sample context. Overall, the
application of prompt-based learning in tagging task has not been fully explored. Cui et al. (2021) recently propose
a template-based NER model using BART, which enumerates text spans and considers the generation probability of
each type within manually crafted templates. For example, given an input “Mike went to New York yesterday”, to
determine what type of entity “Mike” is, they use the template “Mike is a [Z] entity”, and the answer space Z
consists of values such as “person” or “organization”.

8.4 “Reasoning” in NLP
There is still a debate6 about if deep neural networks are capable of performing “reasoning” or just memorizing
patterns based on large training data (Arpit et al., 2017; Niven and Kao, 2019). As such, there have been a number
of attempts to probe models’ reasoning ability by defining benchmark tasks that span different scenarios. We detail
below how prompting methods have been used in these tasks.

Commonsense Reasoning There are a number of benchmark datasets testing commonsense reasoning in NLP
systems (Huang et al., 2019; Rajani et al., 2019; Lin et al., 2020; Ponti et al., 2020). Some commonly attempted
tasks involve solving Winograd Schemas (Levesque et al., 2012), which require the model to identify the antecedent
of an ambiguous pronoun within context, or involve completing a sentence given multiple choices. For the former,
an example could be “The trophy doesn’t fit into the brown suitcase because it is too large.” And the task for the
model is to infer whether “it” refers to the trophy or the “suitcase”. By replacing “it” with its potential candidates in
the original sentences and calculating the probability of the different choices, pre-trained LMs can perform quite
well by choosing the choice that achieves the highest probability (Trinh and Le, 2018). For the latter, an example
could be “Eleanor offered to fix her visitor some coffee. Then she realized she didn’t have a clean [Z].”. The
candidate choices are “cup”, “bowl” and “spoon”. The task for the pre-trained LM is to choose the one from the
three candidates that most conforms to common sense. For these kinds of tasks, we can also score the generation
probability of each candidate and choose the one with the highest probability (Ettinger, 2020).

Mathematical Reasoning Mathematical reasoning is the ability to solve mathematical problems, e.g. arithmetic
addition, function evaluation. Within the context of pre-trained LMs, researchers have found that pre-trained
embeddings and LMs can perform simple operations such as addition and subtraction when the number of digits is
small, but fail when the numbers are larger (Naik et al., 2019; Wallace et al., 2019b; Brown et al., 2020). Reynolds
and McDonell (2021) explore more complex mathematical (e.g. f(x) = x ∗ x, what is f(f(3))?) reasoning
problems and improve LM performance through serializing reasoning for the question.

6e.g. https://medium.com/reconstruct-inc/the-golden-age-of-computer-vision-338da3e471d1
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8.5 Question Answering

8.5 Question Answering
Question answering (QA) aims to answer a given input question, often based on a context document. QA can take a
variety of formats, such as extractive QA (which identifies content from the context document containing the answer;
e.g. SQuAD (Rajpurkar et al., 2016)), multiple-choice QA (where the model has to pick from several choices; e.g.
RACE (Lai et al., 2017)), and free-form QA (where the model can return an arbitrary textual string as a response;
e.g. NarrativeQA (Kočiský et al., 2018)). Generally, these different formats have been handled using different
modeling frameworks. One benefit of solving QA problems with LMs, potentially using prompting methods, is
that different formats of QA tasks can be solved within the same framework. For example, Khashabi et al. (2020)
reformulate many QA tasks as a text generation problem by fine-tuning seq2seq-based pre-trained models (e.g. T5)
and appropriate prompts from the context and questions. Jiang et al. (2020b) take a closer look at such prompt-based
QA systems using sequence to sequence pre-trained models (T5, BART, GPT2) and observe that probabilities from
these pre-trained models on QA tasks are not very predictive of whether the model is correct or not.

8.6 Text Generation
Text generation is a family of tasks that involve generating text, usually conditioned on some other piece of
information. Prompting methods can be easily applied to these tasks by using prefix prompts together with
autoregressive pre-trained LMs. Radford et al. (2019) demonstrated impressive ability of such models to perform
generation tasks such as text summarization and machine translation using prompts such as “translate to french,
[X], [Z]”. Brown et al. (2020) perform in-context learning (§7.2.2) for text generation, creating a prompt with
manual templates and augmenting the input with multiple answered prompts. Schick and Schütze (2020) explore
fixed-prompt LM tuning (§7.2.4) for few-shot text summarization with manually crafted templates. (Li and Liang,
2021) investigate fixed-LM prompt tuning (§7.2.3) for text summarization and data-to-text generation in few-shot
settings, where learnable prefix tokens are prepended to the input while parameters in pre-trained models are kept
frozen. Dou et al. (2021) explored the prompt+LM tuning strategy (§7.2.5) on text summarization task, where
learnable prefix prompts are used and initialized by different types of guidance signals, which can then be updated
together with parameters of pre-trained LMs.

8.7 Automatic Evaluation of Text Generation
Yuan et al. (2021b) have demonstrated that prompt learning can be used for automated evaluation of generated
texts. Specifically, they conceptualize the evaluation of generated text as a text generation problem, modeled
using a pre-trained sequence-to-sequence, and then use prefix prompts that bring the evaluation task closer to the
pre-training task. They experimentally find that simply adding the phrase “such as” to the translated text when using
pre-trained models can lead to a significant improvement in correlation on German-English machine translation
(MT) evaluation.

8.8 Multi-modal Learning
Tsimpoukelli et al. (2021) shift the application of prompt learning from text-based NLP to the multi-modal setting
(vision and language). Generally, they adopt the fixed-LM prompt tuning strategy together with prompt augmentation
techniques. They specifically represent each image as a sequence of continuous embeddings, and a pre-trained LM
whose parameters are frozen is prompted with this prefix to generate texts such as image captions. Empirical results
show few-shot learning ability: with the help of a few demonstrations (answered prompts), system can rapidly learn
words for new objects and novel visual categories.

8.9 Meta-Applications
There are also a number of applications of prompting techniques that are not NLP tasks in and of themselves, but
are useful elements of training strong models for any application.

Domain Adaptation Domain adaptation is the practice of adapting a model from one domain (e.g. news text)
to another (e.g. social media text). Ben-David et al. (2021) use self-generated domain related features (DRFs) to
augment the original text input and perform sequence tagging as a sequence-to-sequence problem using a seq2seq
pre-trained model.

Debiasing Schick et al. (2021) found that LMs can perform self-diagnosis and self-debiasing based on biased
or debiased instructions. For example, to self-diagnosis whether the generated text contains violent information,
we can use the following template “The following text contains violence. [X][Z]”. Then we fill [X] with the
input text and look at the generation probability at [Z], if the probability of “Yes” is greater than “No”, then we
would assume the given text contains violence, and vice versa. To perform debiasing when generating text, we first
compute the probability of the next word P (xt|x<t; θ) given the original input. Then we compute the probability
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8.10 Resources

of next word P (xt|[x<t;xdiagnosis]; θ) by appending self-diagnosis textual input to the original input as mentioned
above. These two probability distributions for the next token can be combined to suppress the undesired attribute.

Dataset Construction Schick and Schütze (2021) propose to use pre-trained LMs to generate datasets given
certain instructions. As an example, suppose we have an unlabeled dataset in which each sample is a sentence. If
we want to construct a dataset containing pairs of semantically similar sentences, then we can use the following
template for each input sentence: “Write two sentences that mean the same thing. [X][Z]” and attempt to generate
a sentence that shares the same meaning as the input sentence.

8.10 Resources
We also collect some useful resources for different prompt-based applications.

Dataset Some datasets specifically designed for few-shot and zero-shot learning are shown in Tab. 9.

Task Dataset Setting URL

Pronoun Disambiguation Problems [93] Zero https://cs.nyu.edu/ davise/papers/...
Winograd Schema Challenge [93] Zero https://cs.nyu.edu/ davise/papers/...Commonsense Reasoning
CPRAG-102 [39] Zero https://github.com/aetting/lm-diagnostics

WNLaMPro [150] Zero https://github.com/timoschick/...
ROLE-88 [39] Zero https://github.com/aetting/lm-diagnosticsLinguistic Capacity Probing
NEG-136 [39] Zero https://github.com/aetting/lm-diagnostics

LAMA [133] Zero https://dl.fbaipublicfiles.com/LAMA/...
Negated LAMA [74] Zero https://github.com/norakassner/LAMA...
Misprimed LAMA [74] Zero https://github.com/norakassner/LAMA...Fact Probing
X-FACTR [66] Zero https://x-factr.github.io/
LAMA-TREx-easy-hard [203] Zero https://github.com/princeton-nlp/...

FLEX [15] Zero,Few https://github.com/allenai/flexText Classification
FewGLUE [154] Few https://github.com/timoschick/fewglue

REALTOXICITYPROMPTS [47] Zero https://allenai.org/data/...General Conditional Gen.
Natural-Instructions [120] Few,Full https://instructions.apps.allenai.org/

Table 9: Few-shot and zero-shot datasets for prompt-based learning.

Prompts As shown in Tab. 10, we collect existing commonly-used prompts designed manually, which can be
regarded as off-the-shelf resource for future research and applications.

9 Prompt-relevant Topics
What is the essence of prompt-based learning and how does it relate to other learning methods? In this section, we
connect prompt learning with other similar learning methods.

Ensemble Learning Ensemble learning (Ting and Witten, 1997; Zhou et al., 2002) is a technique that aims to
improve the performance of a task by taking advantage of the complementarity of multiple systems. Generally, the
different systems used in an ensemble result from different choices of architectures, training strategies, data ordering,
and/or random initialization. In prompt ensembling (§6.1), the choice of prompt templates becomes another way to
generate multiple results to be combined. This has the clear advantage that this does not necessarily require training
the model multiple times. For example, when using discrete prompts, these prompts can simply be changed during
the inference stage (Jiang et al., 2020c).

Few-shot Learning Few-shot learning aims to learn a machine learning system in the data-scarce scenarios with
few training samples. There are a wide variety of methods to achieve few-shot learning including model agnostic
meta-learning (Finn et al., 2017b) (learning features rapidly adaptable to new tasks), embedding learning (Bertinetto
et al., 2016) (embedding each sample in a lower-dimensional space where similar samples are close together),
memory-based learning (Kaiser et al., 2017) (representing each sample by a weighted average of contents from
the memory) etc. (Wang et al., 2020). Prompt augmentation can be regarded as another way to achieve few-shot
learning (a.k.a. priming-based few-shot learning (Kumar and Talukdar, 2021)). Compared to previous methods,
prompt augmentation directly prepends several labeled samples to the currently-processed sample elicit knowledge
from pre-trained LMs even without any parameter tuning.
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